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Abstract

In this paper is presented the design and implementati s :
Networks building tool, which can be used for colilabomt?:':)r:vgfkair? :;T?aiﬁio?‘ag:m
experts knowledge representation. The system allows the users to build a new network, as
well as joining an existing one which may be physically distributed along several remote
places. Once built, a Bayesian Network contains all the information about conditional
probabilities among a set of involved variables. Each group of Bayesian Networks is made
accessible to its users by a centralized repository for such group. The interfaces for the

system have been specified using CORBA's IDL. At this mo :
implemented with the Java language. ment, the system is
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1. Introduction.

Let X, Y be random variables for a random experiment with a sample space and probability
measure P. Suppose X takes values in sample space S and Y takes values in sample space T.
The distributions of X, Y are called marginal distributions.

If X and Y are independent, the probability of 4 and B is given by the product of their
individual probabilities:

P(A, B) = P(A)P(B)

If 4 and B are not independent, i.c. the value for 4 depends on the value of B, the
probability of 4 given that B's occurrence is given by the expression:

P(4,B)
P(B)
We have P(A4,B) = P(B|A)P(A) . Using these equations, we obtain the Bayes Rule:

P(AB)=

P(A4)P(B|4)

The law of total probability asserts that if {4,, A» ..., Aa} is 2 set of indepepdent vanables
whose space is a partition of the sample space, and if a random variable B is dependent of

variables 4, A,, ..., A, then the probability of B is given by:
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P(B) = P(BI4)P(A)+ P(BLA)P(4:) + -+ P(BlA4,)P(4,)

The joint distribution of variables .Y, Y.is a dis.tributior.l which takes values ip 5

[1]. The importance of the joint ¢ istribution is that it stores more information
marginal distributions, i.e. the m.rginal distributions can be obtained from
distribution, but the joint distribution cannot be obtained from the marginaj distributiyy,

More generally, if we have n variables Vi Vo o Va wnth corresponding spaces §,
where space S; contains m values Vi, Viz, - Vim; the joint C!ISU'IbUIion space is §yxSy_
The main drawback for using of the joint distribution is that it expands very
according with the number of variables and the s.ize of their sample space. If
variables are given, each with a sample space of size m, the total number of entrie

joint distribution table is m".

A Bayesian Network is an augmented directed acyclic graph, represented by the
where:
e Vis the set of nodes, each of one represent a random variable, along
probability distribution table indicating how the probability of this
values depend of all the possible combinations of the parents values.

o Eis the set of directed edges.

A random variable X has an incident arc coming from random‘ variable Y if and
dependent of ¥, and X is said to be a parent of Y. Suppose there is a third variable
parent is Y. In this case X and Z are said to be independent given Y (see figure 1).

®» @

Figure 1. Variables X and Z are independent given Y

Every node in the Bayesian Network has associated a probability distribution
depends only of the its parents value. In the above example, X’s distribution must
entry for every value in the sample space of variable Y.

Ar}y entry in the joint probability distribution can be computed from a Bayesian
using the independence and conditional probability rules. This way, a Bayesian
achieves a smaller representation of the joint distribution by using context informatii
dependency/independency patterns among the random variables.

There are two approaches for reasoning with a Bayesian Network: Top-Down and
Up([2]. The Bottom-Up reasoning (also called diagnostic) goes from effects t0
this approach, the probability of a parent variable can be computed given the occurmt
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an event in a child van’a'blc. The Top-Down reasoning (or causal reasoning), computes the
probability of an event given the occurrence of a parent variable, ‘

2. The Distributed Model.

The proposed model for the Distributed Bayesian Network is based in domains. A domain
is a well delimited knowledge area which can be represented by a set of random variables
semantically related. A consistent Bayesian Network could be constructed using only the
variables of the domain. However, some of these variables may be involved with the
variables in another domain, forcing inter-domain connections. :

As an example consider two domains: “Weather " and “Traffic”. A representative Bayesian
Network can be constructed for each of these domains, containing the random variables of
interest. Figure 2 shows a connection between these two domains. If it is raining, the
probability of a car accident augments, connecting the random variable “Rains” which has
the space of possible values {True, False}, and the variable “Car accident”, which has the
same space. When the probability of slow traffic is computed, the variables in Weather
should be included. : .

Nomain Traffir

Namain

Figure 2. The domains Weather and Traffic

When two domains are related by one or more connections among their variables, the
visualization of each domain could expand to see the whole resultant Bayesian Network.
The decision of doing so depends of the specific application and user preferences.

The distribution of each variable respect to its parents should be kept local with the
variable. This should be totally changed, though, whenever a parent is added or removed to
the variable. - ;

The probability of a random variable in the network is evaluated according to a speciﬁc
scenario. The scenario is the set of values of the involved variables, according to which the
resultant probability will be computed. If the value of a variablc {s omitted, the. resultant
Probability can whether be computed using the probability dist.nbunon of tl}gt variable, and
considering each possible value this can take, or computing a single probab:hty value of the
variable according to the probabilities of its predecessors. This way, the resultant
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probability may be a new distribution where all the possible values of the omitteq v,
. ; o Vang|
are considered, or a single probability value.

3. Design of the Distributed System.

The system has been designed using remote objects, specifically CORBA[3]. The
objects are: BayesNet, Node, Distribution, Scenario, BayesNetsRepository
BayesNetObserver. Some of these remote objects are discussed next.

3.1. BayesNet.

This object represents the complete Bayesian Network. Contains the nodes of the
and is responsible of tasks that involve the whole network, such as computing
probability of a given node inside the net or finding the root nodes (those nodes which
not have any parents). :

l When an event occurs in the network (i.e. a node is added or removed, or two nodes
connected or disconnected), the Bayesian Network must notify all the interested objects.
' object can register itself to be notified of events generated in the network.
interface BayesNet : NodeListener
{
typedef sequence <BayesNet> BayesNetArray,
typedef sequence <Node> NodeArray;
string getName ();
NodeArray getNodes ();
Node getNode (in string name);
void addNode (in Node n);
void removeNode (in string name);
NodeArray getRootNodes ();
Distribution computeProbabilities (in string nodeName, in Scenario scenariC.
raises ( BayesNetException);
double computeProbability (in string nodeName, in Scenario scenario)
raises (BayesNetExccption);
boolean isMember (in string nodeName);
void addBayesNetListener (in BayesNetListener nl);
void removeBayesNetListener (in BayesNetListener nl);
string toXBN (); :
b

Figure 3. Definition of the Bayesian Network interface

The BayesNet object listens for actions produced for any of its nodes. This
network itself can fire a notification to its listeners and take the adequate actions,
adding an external node which has been selected as parent or child of any of the
the network.
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The network fires an event when a node is moved, added or removed :
parent-child relationship) is added or removed to the network. oved, and when a link (a

Every Bayesian Network in the system is identified by an uniquc GE e e s e
Along with its name, the network keeps a description of itself, i, can e e o

helping the user t0 select a net among a set of them. The IDL interface for the BayesNet
object is shown in figure 3.

3.2. Node.

The Node object represents an independent node in the system. Each node must maintain
references to every parent and child node, a reference to its current probability distribution
its position in the plane of the network, its name, and the listeners to the actions of thi;
node. Every node in the system is identified by a name given by the user. If two nodes have
the same name but they are in different networks, each network will see only its own node.
But if the nodes are in the same network, then they will be indistinguishable of each other.

A node fires actions when a parent or child is added or removed from it, and when the node
is moved to other position in the network. The IDL interface for the node is shown in figure
4,

3.3 Distribution.

The Distribution object represents the distribution of a variable according to its parents. The
current version of the system supports only distributions with the sample space of values
True and False.

This object keeps a mapping between the values of the set of variables and the probability
for that specific combination of values. The Distribution object must store the names of
every participating variable, except the variable to which the distribution belongs. If there
are n variables in the distribution, the object will maintain 2" probability values. According
to this, a non-parents variable will have only one probability value: the marginal probability
of the variable to be True.

The Distribution object has two ways to retumn a probability value: receiving a Scenario
object or receiving a number. The former way is discussed below. When the last way is
used, the number is interpreted as a set of bits indicating the value of each of the variables.
The first variable is positioned in the least significant bit position, and the last in the most
significant position. A value of zero in the corresponding bit indicates a False value for the
variable, and a value of one indicates a True value.

This object must be able to perform the compute sub-distribution operation. In this
operation, the Distribution object receives an Scenario object with the values of the known
variables, and the object is expected to return a new distribution vqth the probability values
of the unknown variables (those which are not in the scenario) in those cases where the
given scenario is fulfilled. So, if variable v has the value True in the scenario object, the
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interface Node ﬁ

{
typedef sequence <Node> NodeArray;

string getName ();

void setName (in string name);

string getDescription ();

void setDescription (in string desc);
Distribution getDistribution ();

NodeArray getParents ();

long getParentsLength ();

NodeArray getChildren ();

long getChildrenLength ();

Node getParent (in string name);

boolean isParent (in string name),

void addParent (in Node parent);

void removeParent (in string name);

void setDistribution (in Distribution newDist);
Node getChild (in string name);

boolean isChild (in string name);

void addChild (in Node child);

void removeChild (in string name);

void setPosition (in long x, in long y);

void addNodeListener (in NodeListener nl);
void removeNodeListener (in NodeListener nl);
long getXPos ();

long getYPos ();

string varToXBN ();

string structureToXBN ();

Figure 4. Definition of the node interface

resultant sub-distribution must contain just the probability values of those cases whe:
variable is True. This operation is very useful when computing the probability distril
of a given node in the Bayesian Network.

The IDL interface for the Distribution object is shown in figure 5. Although it is
Distribution object is one of the most important remote objects of the system.

3.4 Scenario.

The Scenario object is used simply as a name-value mapper for a given set of variable
used mainly as a friendly interface to retrieve values from the Distribution object.
functions allows the user to set the values of the variables as a sequence of bits in

in the way described in the Distribution object.
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interface Distribution
: StringArray getNames ();
long getNamesLength ();
void setNames (in StringArray names);
void setValues (in DoubleArray values)
. raises (DistributionException);
boolean isElement (in string name);
double getProbability (in Scenario scenario)
raises (ScenarioException);
double getBinaryProbability (in long bits)
raises (DistributionException);
void setProbability (in Scenario scenanio, in double prob)
, raises (ScenarioException);
Distribution computeSubdistribution (in Scenario scenario)
raises (DistributionException);
string toXBN (in string nodeName);

b

Figure 5. Definition of the distribution interface

3.5 BayesNetsRepository.

The ﬁaycsian Networks repository is the object that stores references and descriptions qf
every Bayesian Network in a collaborative session. Each network in the repository is
identified by its name. There must be exactly one repository for each collaborative group.

3.6 BayesNetObserver.

Sometimes local objects, such as graphic user interfaces, will need to listen for a Bayf.sian
Network’s events in order to update their representation or internal state. As local objects,
they cannot just register with the Bayesian Network object because they cannot be an
argument in a remote object invocation.

The solution used here is to define a listener remote object which listens for the Bayes;;n
Network’s events, and whose servant implementation can register (as a local object) the

local listeners interested in such events. The events received by the remote observer will be
retransmitted to the registered local objects.

4. Probability Computing.

For the computation of the probabilities of a node given a scenario, dfi‘smr:“tlll?if:]s ?;‘:
computed and merged in a recursive fashion. The system gives the gfgtl:n o :::s puung
probability of the node for each possible configuration of the unspecihied parents.

In each stage of the compute, the node’s distribution is obtained, and the Dl?mb:rt::\?i:
comput eSubdistribution () method is applied with the given scenario. 4P
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found in the scenario, its value is taken and applied to the actual distribution, eliminag;

entries in which the parent’s value is different from that taken from the scenarig ;1{
resultant distribution has only one value (the node’s probability), the distn'bl;ﬁo
returned. i

After the sub-distribution is computed, the probability of the unknown parents (those
are not included in the scenario) is computed with the given scenario in a recursive cy))
all the possible configurations are to be shown, the distributions are merged in a ney '
that contains the names of all the unknown parents, and the probability entries
computed. Otherwise, the parents probabilities are reduced to one probability using
probability chain rule[4].

When all the configurations probability is required, for each possible combination of valy
in the merged distribution, the probability value when the considered nodes have the

of the actual combination is obtained from the sub-distribution. This value is multip)
either by the probability value of each parent for that combination if the value of the

is positive in the actual combination, or by 1 minus its probability if the value is negati
At the end, the merged probability distribution will be completely full and can be retur
as the result. If only the total probability is required, these results are added in
instead as being put in the merged probability distribution. :

5. Local Design.

The local or implementation side of the system has been designed for a collaborat
interactive graphic environment. Here are explained some of the most important
decisions assumed for the developed system. Ce

5.1. Probability computing methods.

There are several methods for computing the probability of a given variable in a Bayes
Network. The most important are the automatic method (used by the system),
stochastic sampling method. Because of this variety of methods, the Strategy
pattern[5] has been used, allowing for future use of new methods without any changes
the Bayesian Network servant implementation. ' -

5.2. Visualization of the networks and other possible options.

When a user is working with a network, he/she should be able to see whether just
which is working with or all the involved nodes in the network. * -

When the user wants to see the complete network (all the involved nodes), then every
a parent/child connection is performed between a included node and a not included
system must add every connected not included node to the actual network.

This may be just one of several options that may be presented to the user. AS
Bayesian Network behavior is fixed, and one or more options may be optionally chose
the user, the Decorator design pattern has been used. The base network implementam“
as the basic component, and every extension to this behavior acts as a decorator.
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6. Storage of the Networks.

The Bayesian Networks generated using the

XBN format [6]. This XML based format was proposed b isi

' ) y the Decision Th
Adaptive Systems group of Microsoft Research, and is expected to replac; :ldcr g):y csairz;:
Networks Interchange Formats (BNIFs). This format allows the analysis of negxorks

ith the system using other existi :
generated Wi g existing tools, and the collabora iti
already created networks. fave: edition ‘of

System can be saved and recovered using the

7. Implementation Issues.

Currently, the system has been completely implemented using the Java language. Despite of
the relative simplicity of the distnibuted system using CORBA, there are some issues which
should be addressed during the implementation stage.

7.1 The distributed callback on a synchronized method.

In general, Node events cause the execution of a BayesNet object’s method. This method,
in tum, will generate an event received by a BayesNetObserver object. This object will
communicate the event to the local listeners, which in tum will invoke some methods on the
BayesNet object and some Node objects to repaint the network. This sequence of events
will produce a callback on the BayesNet object, and probably on the Node object which
produced the event, as shown in figure 6. Note that the notifier methods in Node, BayesNet
and BayesNetObserver cannot finish before the last listener has finished.

2. Added
1. Added -
pare BayesNet
Observer
‘- = “ -
_______ 2. Added
6 oetPncition() ~=~__ Local link
listener

Figure 6. The chain of events causes a callback over the BayesNet and Node objects
As the remote objects can be accessed by several threads at the same time, many of their
methods must be synchronized.

t a thread will not deadlock itsplf when
hronized method. But in the dlStl'lbll[C'd
olds the monitor, s0 2 deadlock 1s

Thc Java monitors are reentrant (7). This means tha
It invokes a synchronized method from another sync

case, the reentrant thread is not the same as the one that h
Produced.
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To overcome this problem, a thread is created for each notification. This way, ,
method can finish after creating one thread for each listener, freeing the m,Onit
allowing the caliback. N

8. Test of the System.

The system has been tested using the Serum Calcium model developed by Greg
(Cooper, 1986). The system’s input is the XBN file specifying such model, and the
are compared with the manually computed results. Figure 7 shows the
representation for such file.

Figufe 7. Serium Calcium model represented by the system

The probabilities of each node are shown below:
a. True: 0.2.
b. True given not a: 0.8. True given a: 0.2.
c. True given not a: 0.2. True given a: 0.05.
d. True given not b and not ¢: 0.8. True given not b and c: 0.9. True given b
0.7. True given b and c: 0.05.
e. True given not c: 0.8. True given c: 0.6.
As a Bottom-Up reasoning test, consider computing the probability of a=True
d=False. According to the Bayes Rule, this probability is:

P(d a)P(a)

P(ad) = )

P(a) is known. To compute P(d) we use the law of total probability. According t0
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P(d)=P(db.cIP(:c)*+P(dlb.not JP (.ot ) +Pdlnot b,e)P ot b,c)+Pdfnot bnot P (not
,not ¢)

As b and ¢ are independent given a, we have P(b,c)=P(b)P(c). Usin ! the sa .
we have P )=P(b/a)P(a)+P(b/no! a)P(not a} and P(c):P(c/a)P(a)+Pg(c/ not E;(ﬁirsg)r?mg,

Computing the numbers we get P(b) = 0.68, P(c) = 0.17 and P(b, c) = 0.1156.

Similarly: P(b, not c) =0.5644, P(not b, c) = 0.0544 and P(not b, not c) = 0.2656. Fi
we get P(d) = 0.6623. ¢) = 0.2656. Finally,

To compute P(dja), we simply consider P(x/a)=P(x). Doing this we get P(b)=0.2,
P(c)=0.05, P(b,c)=0.01, P®, not ¢)=0.19, P(not b,c)=0.04, P(not b, not c)=0.76, and
P(d|a)=0.7775.

Finally, P(a/d) = 0.23478786. This result is the same as the computed by the system.

Now, consider a Top-Down test, in which the probability of d=True is computed given
a=True.

Making a partition with the values variables b and c in conjunction, and using the law of
total probability, we get:

P(dfa) = P(d,b.c/a) + P(d.b, not cfa) + P(d, not b,cla) + P(d, not b,—fa)

P(da) = P(d/b.c.a)P(b.cla) + P(d/b, not c.a)P(b, not cla) + P(dfnot b,c.a)P(not b.cla) +
P(d[not b, not c,a)P(not b, not cla) ‘

As d does not have a direct dependency on a, and as b and ¢ are independent given a, the
expression above can be rewritten as:

P(dfa) = P(d/b.c)P(bla)P(cla) + P(d/b, not c¢)P(ba)P(not ¢/a) + P(dfnot b.c)P(not
bja)P(cfa) + P(d[not b, not c)P(not bja)P(not cfa)

Those probabilities can be directly obtained from the variables’ distributions. After
computing the products we get.

P(d/a) = 0.0005 + 0.133 + 0.036 + 0.608 = 0.7775.

Which is the result computed by the system.

9. Conclusion.

Bayesian Networks are very useful tools for rcpresentipg de_pendency relationships among
random variables. Unfortunately modeling these relations is not an casy task, and may

' ol i i allows a
require collaboration among field specialists of the gnvolved areas. Tlfu(slosrgrflsatit:llsn e
collaborative constructions of Bayesian Networks using the concept 0

381



382

J. M. Medina-Apodaca and J. Figueroa-Nazuno

the problem in a set of more manageable parts. Two domains can be joined by estapy;
a parent-child relationship between one or more pairs of their nodes. ist

Every Bayesian Network for a group of users is maintained in a repository, where it
retrieved by its name. More than one user can access the same network, but the nety
belongs always to a single domain, and is physically kept in a lonely site.

The only cache used is the graphic representation of the network for each user. A
through semantic is used for every update to the network. The update to every
representation (including the source of the update) is delayed until the node and Baye
Network are updated, and the last fires the proper event.

Extensions can be made to this work, such as addition of new probability comp
methods. If the system is to be used in a slow network, mechanisms for consist
assurance should be included. These mechanisms, though, may impose limitations
the need to have a predefined size of the groups when using vector logical clocks. The
presented here is a first step for a Distributed Bayesian Networks Pattern Disco

System.
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